
Mössbauer spectra of single-domain particles with rotating magnetic moments

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys.: Condens. Matter 15 4827

(http://iopscience.iop.org/0953-8984/15/27/314)

Download details:

IP Address: 171.66.16.121

The article was downloaded on 19/05/2010 at 12:33

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/15/27
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 15 (2003) 4827–4839 PII: S0953-8984(03)61335-4
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Abstract
The influence of the rotation of a particle’s magnetic moment in the magnetic
anisotropy field on the shape of the Mössbauer spectra of hyperfine structure
is analysed theoretically. It is found that, due to rotation, a renormalization
of the nuclear g-factors occurs, which results in a qualitative transformation
of Mössbauer absorption spectra. In particular, along with the magnetic sextet
which is well known in the Mössbauer spectroscopy of the 57Fe isotope, partial
spectra can be formed that consist of ‘magnetic’ quintuplet, quartet, triplet and
even doublet lines. This peculiarity in forming the spectra of magnetic hyperfine
structure should be taken into account in analysing the Mössbauer spectra of
materials with nano-sized magnetic particles.

1. Introduction

For more than 40 years Mössbauer spectroscopy has been known as a powerful method
of investigating hyperfine interactions in solids. Until now, the mechanism that forms
the hyperfine magnetic structure revealed in the absorption spectra seemed to be reliably
established. The Mössbauer absorption spectra of magnetic materials are usually interpreted
within a group of lines (partial spectra) that form due to the hyperfine interaction of the nuclear
magnetic moment with the static hyperfine field at the nucleus. There can also arise lines
originated by the quadrupolar interaction in the presence of the electric field gradient at the
nucleus. For instance, as far as the 57Fe isotope widely used in Mössbauer spectroscopy is
concerned, the hyperfine magnetic field splits the energy level of the ground nuclear state with
spin Ig = 1/2 into two sublevels that have different projections, mg , of nuclear spin onto the
direction of the hyperfine field, whereas the excited nuclear state with energy E0 = 14.4 keV
and spin Ie = 3/2 is split into four sublevels with different nuclear spin projections me, in
accordance with the Hamiltonians of the Zeeman interaction between the nuclear magnetic
moments and the hyperfine magnetic field Hh f :

Ĥ (g,e) = −gg,eµNHh f Î
(g,e). (1)
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Figure 1. (a) A schematic diagram of the splitting of 57Fe nuclear energy levels for the excited
(e) and ground (g) states in the static hyperfine field and (b) the corresponding magnetic sextet
Mössbauer absorption spectrum. Here, and in the text, the spectra are calculated for non-polarized
gamma radiation, randomly distributed directions of the hyperfine field, and Hh f = 330 kOe.

Here, µN is the nuclear magneton, gg,e are the nuclear g-factors, and Î(g,e) are the nuclear spin
operators for the ground (g) and excited (e) states. A schematic diagram of the splitting of
57Fe nuclear energy levels is shown in figure 1(a).

Transitions occur between the nuclear sublevels of the ground and excited states that
are observed as just a set of lines in experimental absorption spectra. The positions and
intensities of the lines are determined by the Hamiltonians (1) and multipolarity of the
corresponding transition from the ground state to the excited state. For the 57Fe nuclei, the
M1-type magnetic dipolar radiation occurs, for which transitions with changes in nuclear spin
projections of more than unity (mg = ±1/2 → me = ∓3/2) are forbidden. Hence, the 57Fe
absorption spectrum consists of not eight lines but six lines (the so-called magnetic sextet) [1],
corresponding to the schematic in figure 1(a). The ratios of intensities are defined by the
Clebsch–Gordan coefficients and the crystal texture of the sample being studied, e.g. for iron-
based polycrystalline samples or magnetic alloys, when the direction of the hyperfine field at
the nucleus takes no preferential orientation and is randomly scattered, the intensities of the
spectral lines obey the ratios 3:2:1:1:2:3, as shown in figure 1(b).

Most Mössbauer absorption spectra of magnetic materials are analysed on the basis of
this magnetic sextet. Experimental spectra are decomposed into a superposition of sextets
that correspond to different values of hyperfine field, as described by a hyperfine field
distribution [2]. The spread of hyperfine fields is associated with the presence of different
magnetic phases, magnetic sublattices in ferri- and antiferromagnetic materials, as well as
crystal lattice defects. If this scheme of analysis within static hyperfine fields does not fit
experimental spectra, then more complicated models are involved in order to describe the
so-called relaxation effects [3–5] when the strength and/or direction of the hyperfine field can
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change stochastically in time due to spin–lattice, spin–spin or other relaxation processes (e.g.
for paramagnetic crystals [6], ferrofluids [7], single-domain particles under radio-frequency
magnetic field excitation [8] or superparamagnetic relaxation [9] etc).

For small single-domain magnetic particles, the particle’s magnetic moment should rotate
about the easy magnetization axis, which results in rotation of the hyperfine magnetic field.
This fact is known in Mössbauer spectroscopy but, in taking the effect into account, one
usually assumes that the characteristic precession frequency,�, is much higher than the Larmor
frequencies of nuclear spin precession in the hyperfine field. In this case, the magnetic sextets
typical for the static hyperfine structure of 57Fe nuclei remain in the absorption spectra with
an effectively smaller hyperfine magnetic splitting [10]. In the general case, very different
relationships between the frequency � and the Larmor frequencies of nuclear spin precession
are realized in the samples studied. In this paper we demonstrate that, even if the relaxation
effects are negligible, rotation of the hyperfine field in a small particle can also result in
absorption spectra that are qualitatively different to the conventional static spectra of hyperfine
magnetic structure. In particular, along with ‘static’ magnetic sextets for 57Fe nuclei, there
arise partial absorption spectra of small magnetic particles that consist of five, four, three and
even two lines, i.e. ‘magnetic’ quintuplets, quartets, triplets and even doublets can be revealed
in the partial spectra of hyperfine structure. It is obvious that these features must be taken
into account in analysing experimental absorption spectra, even if the predicted anomalies are
not realized in a clear form but are smeared out over the spectra due to the superposition of
different magnetic components or relaxation effects.

2. Rotation of the magnetic moment of single-domain fine particles

Let us consider a magnetic particle of sufficiently small size such that it can be regarded as
single domain and homogeneously magnetized. Such a particle usually exhibits magnetic
anisotropy. Also, in the case of axial symmetry, the energy density of magnetic anisotropy is
defined by the well known equation

Ean = −K
M2

z

M2
0

= −K cos2 θ (2)

where K is the magnetic anisotropy constant, M0 is the particle’s magnetic moment per
unit volume, Mz is the projection of the magnetic moment onto the symmetry axis, and θ

is the angle between the direction of the particle’s magnetic moment and the axis. Modern
technology allows us to produce materials with magnetic particles of an ultra-small size of
several nanometres (see, for instance, [11–16]). Due to the small volume, V , of such particles,
their magnetic anisotropy energy, K V , is of the order of magnitude of several hundred kelvin so
that, even at room temperature, all the energy states with arbitrary orientation of the particle’s
magnetic moment (with respect to the magnetic anisotropy axis) will be occupied.

The magnetic moment that is inclined by angle θ to the anisotropy axis stays in the
magnetic anisotropy field

Han = −∂ Ean

∂Mz
= 2K

Mz

M2
0

= 2K

M0
cos θ. (3)

It is well known that, in this situation, the magnetic moment precesses about the magnetic field
direction with a frequency of [17]

� = −γ Han (4)
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Figure 2. The rotation of the magnetic moment of particles with prolate (K > 0,� < 0) and
oblate (K < 0, � > 0) spheroidal shape.

where γ is the gyromagnetic ratio. As seen from equations (3) and (4), the precession frequency
can be represented in the following form:

� = �0 cos θ (5)

where

�0 = −2γ K/M0. (6)

One can see that the precession frequency � does not depend on the particle’s volume and is
determined by the precession angle θ .

Note that the sign of the precession of the particle’s magnetic moment is defined by the sign
of the anisotropy constant K . When K > 0, i.e. in the presence of the easy magnetization axis,
counterclockwise (� < 0) rotation of the magnetic moment occurs. In the case of magnetic
anisotropy of the ‘easy-plane’ kind (K < 0), the sign of the precession of the magnetic moment
becomes positive, i.e. clockwise rotation (� > 0). These situations can be realized when the
magnetic anisotropy arises from the shape of the particle, for instance in the form of prolate
or oblate spheroids (see figure 2). As can be seen below, the sign of rotation of the particle’s
magnetic moment is very important to the specific transformation of Mössbauer absorption
spectra. It is also essential that, at angles θ close to zero, the rotational frequency of the
particle’s magnetic moment is a maximum, � ≈ �0, and that, at θ = π/2, the precession
frequency goes to zero. Hence, there is always a range of angles θ over which the precession
frequency � is comparable with the precession frequencies of nuclear spins in the hyperfine
magnetic field at the nucleus.

3. Mössbauer spectra within rotation of the hyperfine field

The hyperfine field follows changes in the direction of the magnetic moment, i.e. it also rotates
about the magnetic anisotropy axis:

Hh f (t) = Hhf [nz cos θ + (nx cos(�t) + ny sin(�t)) sin θ ] (7)

where nx , ny and nz are the unit vectors along the x-, y- and z-axes, respectively. If
the characteristic precession frequency, �, is much higher than the frequencies of nuclear
spin precession that were assumed earlier in Mössbauer spectroscopy of superparamagnetic
particles [10], then the time-dependent components of the hyperfine field are averaged to zero
and the time-average hyperfine field is reduced to

H̄h f = Hh f cos θnz. (8)
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As simple estimates show, for small particles of the order of several nanometres in size, the
parameter �0 is just several times larger than the Larmor frequencies of nuclear spin precession.
So, for γ -Fe2O3 particles with an average diameter of about 7 nm and a characteristic magnetic
anisotropy energy K V of about 1000 K (see, for example, [15]), one can estimate the value of
the parameter �0/2π ≈ 0.5 GHz. So, for increasing angle θ , the precession frequency � can
become comparable to, or less than, the Larmor frequencies of nuclear spin precession. As is
shown below, taking the finiteness of � into consideration results in a cardinal transformation
of the hyperfine magnetic structure of Mössbauer spectra.

In this case, the Hamiltonians of hyperfine interaction of the nuclear magnetic moments
with hyperfine field Hh f (t) that rotate about the z-axis with frequency � become time
dependent:

Ĥ (g,e)(t) = −gg,eµN Hh f (t)Î
(g,e). (9)

Note that, in the general case, there is also the quadrupolar interaction of a nucleus with the
electric field gradient at the nucleus. However, it is usually much weaker than the hyperfine
interaction and we will neglect this term in the following. To describe the Mössbauer spectra
in this case, we can use a general theory of the relaxation Mössbauer absorption spectra under
radio-frequency magnetic field excitation that has been developed for a hyperfine field Hh f (t)
that depends on time in an arbitrary way [18–20]. In particular, when the hyperfine field
changes in time along an arbitrary deterministic trajectory, the absorption cross section of
a gamma-quantum with energy E = h̄ω can be represented in the following way (see, for
example, [19]):

σ(ω) = 2

�0Th f
Re

∫ Th f

0
dt0

∫ ∞

t0

Sp

{
V̂ +

[
T̂ exp

{∫ t

t0

i[ω̃Î − L̂Ĥ (t ′)] dt ′
}]

V̂

}
dt (10)

where �0 is the energy width for the excited nuclear state, Th f = 2π/� is the period of changes
in the hyperfine field, V̂ is the operator for the interaction of the gamma-quantum with the
nucleus, which determines the intensities of the nuclear transitions, T̂ is the time-ordered
operator, ω̃ = ω + i�0/2, Î is the identity operator, and L̂Ĥ (t) is the Liouville operator for
the hyperfine interaction, which is defined by the Hamiltonians Ĥ (g)(t) and Ĥ (e)(t). The
super-operator L̂Ĥ (t) acts in the space of (2I (g) + 1)(2I (e) + 1) nuclear variables:

(L̂Ĥ )memg m′
em′

g
= Ĥ (e)

mem′
e
δmgm′

g
− Ĥ (g)

mgm′
g
δmem′

e
(11)

where mg,e are the projections of nuclear spin onto a given axis. On the basis of equations
like equation (10), calculations have been performed of absorption spectra of nanostructured
ferromagnetic alloys under radio-frequency field excitation [21].

In order to transform equation (10), one can introduce the following super-operator:

Ĝ(t0, t) = T̂ exp

{∫ t

t0

dt ′[−iL̂Ĥ (t ′)]
}

= Ĝ(e)(t0, t) ⊗ Ĝ(g)(t, t0) (12)

which is the direct product of the evolution operators for the ground and excited nuclear states,
defined by

Ĝ(e,g)(t0, t) = T̂ exp

(∫ t

t0

dt ′[−iĤ (e,g)(t ′)]
)
. (13)

In our case, equation (13) can be simplified substantially if one considers the coordinate system
that rotates with frequency � about the z-axis. Such a transition corresponds to the unitary
transformations with the elementary operators of rotation about the z-axis. This allows one to
incorporate the integral over time into the evolution operators (13) and derive the following
equations:
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Figure 3. (a) The rotating hyperfine field in the laboratory coordinate system and (b) the
quantization axes of the operators (15) for the ground and excited 57Fe nuclear states (K > 0, � <

0) in the rotating coordinate system.

Ĝ(e,g)(t0, t) = e−i� Îz t0 ei� Îz t0 T̂ exp

(
−i

∫ t

t0

Ĥ (g,e)(t ′) dt ′
)

e−i� Îz t ei� Îz t

≡ e−i� Îz t0 exp

(
−i(t − t0)

ˆ̃H
(g,e)

)
ei� Îz t (14)

where ˆ̃H
(g,e)

are the time-independent Hamiltonians of hyperfine interaction in the ground and
excited nuclear states within the rotating coordinate system, which can be written as

ˆ̃H
(g,e)

= (−� + ωg,e cos θ) Î (g,e)
z + ωg,e sin θ Î (g,e)

x . (15)

Here ωg,e = −gg,eµN Hh f are the constants of hyperfine interaction for the ground and excited
nuclear states.

Using equation (14) one can easily derive that equation (10), for the absorption cross
section within the rotating hyperfine field (7), is reduced to a rather simple analytical form.
Taking into account different polarizations, η, of the incident gamma-rays, the absorption cross
section is given by

σ(ω,�, θ) = −�0

2
Im

∑
η

∑
mgme

m̃gm̃e

V (η)+
m̃gm̃e

〈m̃g|mg〉〈me|m̃e〉
ω − (λ̃em̃e − λ̃gm̃g) − �(mg − me) + i�0/2

V (η)
memg

(16)

where V (η)
memg are the matrix elements for the operator of interaction of the gamma-quantumwith

the nucleus, mg,e are the projections of nuclear spins onto the z-axis, m̃g,e are the projections

of nuclear spins onto the quantization axes for which the operators ˆ̃H
(g,e)

are diagonal, and

λ̃g,e =
√

(−� + ωg,e cos θ)2 + ω2
g,e sin2 θ. (17)

Note an essential circumstance that the directions of the quantization axes for the operators (15)
in the ground and excited nuclear states are different, as is clearly seen in figure 3.

As follows from equation (16), in the case of the rotating hyperfine field, lines with natural
line-width �0 should be observed in the absorption spectrum. In the general case, the number of
lines is equal to N = (2Ig + 1)2(2Ie + 1)2. For the 57Fe isotope N = 64, however, the selection



Mössbauer spectra of single-domain particles with rotating magnetic moments 4833

Figure 4. 57Fe Mössbauer absorption spectra within the rotating hyperfine field (θ = 80◦) for
(a)–(e) different values of the parameter �0/2π = 0, −0.35, −0.8, −2.3, −50 GHz. The spectra
are averaged over the range of angles θ − �θ to θ + �θ (�θ = 1◦).

rules for the magnetic dipolar M1 transitions reduce the number of allowed lines to 24, each
being doubly degenerate because the pairs of lines with indices (mg, me) and (mg ±1, me ±1)

have the same energy of transitions.
Using equation (16), one can calculate the absorption spectrum as a function of the

precession frequency � and the angle θ . Figures 4 and 5 show the 57Fe Mössbauer absorption
spectra calculated for the case of a hyperfine field rotating about an axis under θ = 80◦
for different values of the parameter �0 (i.e. different frequencies �) and different signs of
rotation. The spectra are actually divided into a central group of lines and side-bands. The
intensity of the side-bands decreases as the rotation frequency increases and they leave the
spectral range of conventional Mössbauer measurements. (Just to stay closer to reality and
smear out the non-essential effects of the side-bands, we have plotted the spectra averaged
over the narrow range of angles θ − �θ to θ + �θ with �θ = 1◦.) In the limiting case of
high precession frequency, independent of the sign of rotation, a ‘static’ magnetic sextet is
observed that corresponds to the rotation-averaged hyperfine field (8). Within an intermediate
range of precession frequencies, a non-trivial transformation of the spectra is observed. It is
seen clearly that, instead of the classic sextet of the static hyperfine structure (top spectra in
figures 4 and 5), there can appear unusual spectra consisting of a triplet, quartet and quintuplet
of lines for negative values of the precession frequency � (K > 0) and a doublet of lines for a
positive sign of rotation (K < 0). That is, rotation of the hyperfine field can drastically change
the Mössbauer line-shape of the hyperfine magnetic structure.
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Figure 5. 57Fe Mössbauer absorption spectra within the rotating hyperfine field (θ = 80◦) for
(a)–(e) different values of the parameter �0/2π = 0, 0.35, 0.5, 0.7, 50 GHz. The spectra are
averaged over the range of angles θ − �θ to θ + �θ (�θ = 1◦).

4. High-precession-frequency limit

To clarify the physical nature of this qualitative transformation of Mössbauer spectra in the
rotating hyperfine field, let us analyse the case of high precession frequency when

|�| � |ωg,e|. (18)

In this case, the absorption spectrum consists of the central group of six double-degenerate
lines and side-bands. If condition (18) holds, then the side-bands leave the ordinary spectral
range and become of minor intensity, so that one can neglect them to a first approximation.

The major contribution to the absorption spectrum is given by the central lines with indices
m̃g = mg and m̃e = me, so that equation (16) for the absorption cross section is reduced to
the following approximate expression:

σ(ω,�, θ) = −�0

2
Im

∑
η

∑
mg me

|V (η)
memg

|2 1

ω − (ω̃eme − ω̃gmg) + i�0/2
(19)

where ω̃g and ω̃e are the effective constants of hyperfine interaction for the ground and excited
nuclear states, which are found from equations (17). By providing the precession frequency
to meet the condition (18), these are determined by

ω̃g,e = −g̃g,eµN Hh f cos θ (20)
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Figure 6. 57Fe Mössbauer absorption spectra within the rotating hyperfine field for different values
of the angle θ = 10◦, 45◦ , 60◦, 70◦ , 75◦ , 80◦ (a)–(g) and the parameter �0/2π = 0.5 GHz. The
spectra are averaged over the range of angles θ − �θ to θ + �θ (�θ = 1◦).

where the renormalized nuclear g-factors for the ground and excited nuclear states are
introduced as follows:

g̃g,e = gg,e

(
1 − ωg,e

2�
sin θ tan θ

)
. (21)

As seen from equation (20), apart from the effective decrease in the value of hyperfine field
proportionally to cosθ in accordance with equation (8), the rotation transforms qualitatively the
Mössbauer spectra of hyperfine structure through the renormalization of the nuclear g-factors,
according to equation (21). With that, changes in the effective g̃-factors for the ground and
excited nuclear states appear to be different, since the initial gg- and ge-factors are different.
Note that, for the 57Fe isotope g-factors for the ground and excited nuclear state are different
not only by value but also by sign (gg = 0.18 and ge = −0.10).

As follows from equation (21), for the counterclockwise rotation (� < 0, K > 0) the
g̃-factor for the ground nuclear state decreases in its absolute value, whereas that for the
excited nuclear state increases compared to the real g-factors. It is clear that, for angles θ close
to π/2, the effective factor g̃g for the ground nuclear state can even change to the opposite
sign. Precisely this circumstance is the reason for the qualitative transformation of Mössbauer
spectra, in particular for the appearance of the triplet, quartet and quintuplet of lines shown in
figure 4. For instance, if the angle θ satisfies the following condition

cos θ =
√

ωg

2�0
, (22)

then the effective factor g̃g for the ground nuclear state is equal to zero, so that a ‘magnetic’
quartet of lines is to be observed in the absorption spectrum. The schematic diagram in figure 7
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Figure 7. (a) A schematic showing the 57Fe nuclear energy-level splitting for the excited and
ground states in the rotating hyperfine field with �0/2π = −1 GHz, θ = 81◦ , ω̃g = 0 and (b) the
corresponding magnetic ‘quartet’ Mössbauer absorption spectrum.

shows the splitting of the energy levels in the hyperfine field for this case and the corresponding
Mössbauer absorption spectrum.

In turn, for the clockwise rotation (� > 0, K < 0) the g̃-factor for the excited nuclear
state decreases in absolute value, whereas that for the ground nuclear state increases compared
to the real g-factors. In this case, for angles θ close to π/2, the effective factor g̃e for the
excited nuclear state can change its sign. And, if the angle θ meets the following condition

cos θ =
√

ωe

2�0
, (23)

then the effective factor g̃e for the excited nuclear state is equal to zero and the absorption
spectrum looks like a ‘magnetic’ doublet of lines. The corresponding schematic of the energy-
level splitting in the hyperfine field and Mössbauer absorption spectrum are shown in figure 8.

5. Resulting Mössbauer spectrum of a single-domain particle within rotation of the
hyperfine field

It is obvious that the resulting Mössbauer spectrum of a single-domain fine particle is a
superposition of partial spectra corresponding to energy states with different orientations of
the particle’s magnetic moment with respect to the magnetic anisotropy axis. Figures 6 shows
the 57Fe Mössbauer absorption spectra calculated for the case of the hyperfine field rotating
about an axis under different angles θ for the parameter �0/2π = 0.5 GHz, corresponding to
γ -Fe2O3 particles with an average diameter of about 7 nm [15]. One can see that the hyperfine
magnetic structure with the renormalized g̃-factors is observed distinctly in the absorption
spectra for angles θ > 70◦. For decreasing angle θ , the qualitative effect of rotation on the
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Figure 8. (a) A schematic showing the 57Fe nuclear energy-level splitting for the excited and
ground states in the rotating hyperfine field with �0/2π = 0.5 GHz, θ = 80◦, ω̃e = 0 and (b) the
corresponding magnetic ‘doublet’ Mössbauer absorption spectrum.

shape of the Mössbauer spectra becomes weaker and the hyperfine structure with just the
rotation-averaged hyperfine field (8) remains in the spectra. However, one should bear in
mind that an appreciable rotation effect can be registered not only if the spectra take the non-
conventional shape shown in figures 4 and 5 but also when the corresponding line-shifts are
comparable to the natural line-width �0. For example, for the parameter �0/2π = 0.5 GHz,
one can estimate the rotation effect to be detectable for angles θ > 30◦.

In the absence of relaxation effects, the resulting absorption spectrum of a single particle
with axial magnetic anisotropy (2) is defined by the weighted sum of partial spectra (16) with
different angles θ as follows:

σ̄ (ω) =
∫

σ(ω,�0 cos θ, θ)P(θ) sin θ dθ (24)

where P(θ) represents populations of different energy states with different orientations of the
particle’s magnetic moment at a given temperature T ,

P(θ) = C exp

(
K V cos2 θ

kB T

)
(25)

(kB is the Boltzmann constant and C is the normalization factor).
As follows from equation (24), for small particles of nanometre size, if all the states

with different orientations of the particle’s magnetic moment are populated, then the non-
conventional features observed in the partial spectra of figures 4 and 5 would be considerably
smeared out in their superposition in the resulting spectrum. However, as can clearly be seen—
even from visual comparison of the two series of spectra shown in figures 4 and 5—the degree
of smearing should be substantially different for different signs of rotation of the hyperfine field.
A wide spread of line positions can be observed in partial spectra for the negative precession
frequency � (K > 0), so that it is scarcely possible to observe any distinct hyperfine structure
in the resulting spectrum. At the same time, for positive � (K < 0), a topological spectral
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Figure 9. 57Fe Mössbauer absorption spectra of a single-domain particle with the magnetic
anisotropy constant K < 0 for the parameter �0/2π = 0.5 GHz (a) and 1 GHz (b).

shape like a magnetic ‘doublet’ remains over a wide range of � (or a wide range of angles θ at
a given value of the parameter �0). In this case, one can hope to find such a rotational ‘doublet’
in the resulting spectrum of the hyperfine structure of small magnetic particles. As an example,
figure 9 shows the 57Fe Mössbauer absorption spectra calculated within equation (24) for the
parameters K V/kB T = −5 and �0/2π = 0.5 GHz. As can clearly be seen from the figure,
the magnetic ‘doublet’ can remain in the resulting spectra of small magnetic particles.

6. Conclusions

In conclusion, we would like to stress that, even if the predicted features of the hyperfine
structure formation were not revealed clearly because of the superposition of different partial
spectra and the relaxation effects in real situations, the specific transformation of Mössbauer
absorption spectra under a rotation of the hyperfine magnetic field should be taken into
consideration in analysing the experimental spectra of small magnetic particles. Moreover, the
example of the effective magnetic ‘doublet’, revealed in the resulting spectra shown in figure 9,
is of particular interest. Indeed, many Mössbauer studies of different magnetic materials result
in absorption spectra with distinct hyperfine magnetic splitting and negligible quadrupolar
splitting at low temperature, while the higher-temperature spectra manifest the presence of
doublets of lines with remarkable quadrupolar splitting. The only conventional explanation
for this fact is the assumption that the hyperfine field is perpendicular to the principal axis of
the electric field gradient at the nucleus. An alternative reason for such behaviour could be just
the appearance of the effective magnetic ‘doublets’ due to the re-distribution of populations of
the different energy states with increasing temperature.

To observe the qualitative effects discussed above in a distinct form, one needs to realize
a situation where the hyperfine field is forced by an external perturbation to rotate at a given
frequency and angle. For instance, this can be done by collecting the Mössbauer absorption
spectra of fine magnetic particles under excitation within an external rotating radio-frequency
magnetic field that is strong enough to make the particles’ magnetic moments follow the
changes in the external field (i.e. rotate about the corresponding axis at the given angle). By
providing the appropriate characteristics of the external rotating magnetic field, one can realize
the conditions necessary for observing the specific shapes of Mössbauer absorption spectra
shown in figures 4 and 5.
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